TARGET MATHEMATICS by:- AGYAT GUPTA Page 1 of 4

पजियन क्रमांक **REGNO:-TMC -D/79/89/36**

CODE:- AG-2-1899

General Instructions :

- All question are compulsory. 1.
- 2. The question paper consists of 29 questions divided into three sections A,B and C. Section - A comprises of 10 question of 1 mark each. Section - B comprises of 12 questions of 4 marks each and Section - C comprises of 7 questions of 6 marks each .
- Ouestion numbers 1 to 10 in Section A are multiple choice questions where you are to select one 3. correct option out of the given four.
- 4. There is no overall choice. However, internal choice has been provided in 2 question of four marks and 2 questions of six marks each. You have to attempt only one If the alternatives in all such questions.
- 5. Use of calculator is not permitted.
- 6. Please check that this question paper contains 3 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of 7. the answer-book by the candidate.

सामान्य निर्देश :

- सभी प्रश्न अनिवार्य हैं। 1.
- इस प्रश्न पत्र में 29 प्रश्न है, जो 3 खण्डों में अ, ब, व स है। खण्ड अ में 10 प्रश्न हैं और प्रत्येक प्रश्न 1 अंक का है। खण्ड ब में 2. 12 प्रश्न हैं और प्रत्येक प्रश्न 4 अंको के हैं। खण्ड – स में 7 प्रश्न हैं और प्रत्येक प्रश्न 6 अंको का है।
- प्रश्न संख्या 1 से 10 बहुविकल्पीय प्रश्न हैं। दिए गए चार विकल्पों में से एक सही विकल्प चूनें। 3.
- इसमें कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 2 प्रश्न 4 अंको में और 2 प्रश्न 6 अंको में दिए गए हैं। आप दिए गए 4. विकल्पों में से एक विकल्प का चयन करें।
- कैलकूलेटर का प्रयोग वर्जित हैं । 5.
- कृपया जाँच कर लें कि इस प्रश्न–पत्र में मुद्रित पृष्ठ 14 हैं। 6.
- प्रश्न–पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर–पुस्तिका के मुख–पृष्ठ पर लिखें। 7.

Pre-Board Examination 2010 -11

Time: 3 Hours

अधिकतम समय : 3

Maximum Marks : 100 अधिकतम अंक : 100 Total No. Of Pages : 14

कुल पृष्ठों की संख्या : 14

	CLASS – XII MATHEMATICS					
Section A						
Q.1	Find the value of k such that the plane $4x + 4y - kz = 0$ contain the line $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{4}$. Ans. k=5					
Q.2	If each element of a second order determinant is either zero or one, what is the probability that the value of the determinant is positive?					
Q.3	Prove that : $\sin\left(2\cos^{-1}\left(-\frac{3}{5}\right)\right) = -\frac{24}{25}$.					
Q.4	If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?					
Q.5	Let relation $R = \{(x, y) \in w \times w : y = 2x - 4\}$. If (a, -2) and $(4, b^2)$ belong to relation R, find the value of a and b. Ans. a=1,b=2					
Q.6	An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at					
TMC/D/7	9/89 1 P.T.O.					
Ph. :2	Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony 2337615; 4010685®, 92022217922630601(O) Mobile : <u>9425109601;9907757815</u> (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X , XI & XII .© publication of any part of this paper is strictly prohibited					

Visit us at : http://www.targetmathematic.com; Email:agyat99@gmail.com. SOLID CONVERTER PDF

To remove this message, purchase the product at www.SolidDocuments.com

Q.7	$\begin{array}{c c} \hline & 729 \\ \hline & \\ \text{Show that} \\ \mathbf{x}+2 \\ \mathbf{x}+3 \\ \mathbf{x}+b \\ \mathbf{x}+b \\ \mathbf{x}+2 \\ \mathbf{x}+3 \\ \mathbf{x}+b \\$						
Q.8	$\begin{aligned} \mathbf{x}+3 \mathbf{x}+4 \mathbf{x}+\mathbf{c} \\ \text{Evaluate:} \int_{0}^{a} \frac{1}{x+\sqrt{a^2-x^2}} dx. \text{Ans} \frac{\pi}{4} \end{aligned}$						
Q.9	Find x, y if the points (x, -1, 3), (3, y, 1) and (-1, 11, 9) are collinear. Ans : $x = 2$, $y = -5$						
Q.10	Find the least value of a such that the function $x^2 + ax + 1$ is increasing on [1,2]. Ans a $= -2$						
	Section B						
Q.11	Find the vector equation of the plane which is at a distance of $\frac{6}{\sqrt{29}}$ from the origin and its normal						
	vector from the origin is $2\hat{i} - 3\hat{j} + 4\hat{k}$. Also deduce its Cartesian form. Ans $r \cdot (2i - 3j + 4k) = 6$, cartesian $= 2x - 3y + 4z = 6$ OR						
	A variable plane which remains at a constant distance of 9 units from the origin, cuts the coordinate axes at the points A, B and C. Show that the locus of the centroid of \triangle ABC is $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{9}$.						
Q.12	Evaluate : $\int \frac{1-x^2}{x(1-2x)} dx$. Ans $\frac{1}{2}x + \log x - \frac{3}{4}\log 1-2x + c$.						
	OR Evaluate: $\int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^2 x} dx$. Ans $= \pi^2$						
Q.13	In a game, a man wins a rupee for a six and loses a rupee for any other number when a fair die is thrown. The man decided to throw a die thrice but to quit as and when he gets a six. Find the expected value of the amount he wins / loses. Ans $-91/54$						
	OR The sum and the product of the mean and variance of a binomial distribution are 24 and 128						
	respectively. Find the distribution. Ans $p(x=r) = {}^{32}c_r \left(\frac{1}{2}\right)^r \left(\frac{1}{2}\right)^{32-r}$ r=0,1,2,32						
Q.14							
Q.15	Find the intervals in which the function f given by $f(x) = x^3 + \frac{1}{x^3}, x \neq 0$ is (i) increasing (b)						
	decreasing . $\frac{\{\text{Ans.(i)} \ f(x) \uparrow on(-\infty,-1] \cup [1,\infty) \ (ii) \ f(x)is \downarrow [-1,0) \cup (0,1] \}}{\text{OR}}$						
	Find all the tangents to the curve $y = \cos(x + y), -2\pi \le x \le 2\pi$ that are parallel to the line $x + 2y = 0$. Ans $(\frac{\pi}{2}, 0) \& (\frac{-3\pi}{2}, 0)$ equation of tangent are						
	+ $2y = 0$. Ans $(-\frac{1}{2}, 0) & (-\frac{1}{2}, 0)$ equation of tangent are						
TMC/D/79 Ph. :23	2 P.T.O. Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony 37615; 4010685®, 92022217922630601(O) Mobile : 9425109601;9907757815 (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X , XI & XII .© publication of any part of this paper is strictly prohibited Visit us at : http://www. targetmathematic.com; Email:agyat99@gmail.com.						

	TARGET MATHEMATICS by:- AGYAT GUPTA Page 3 of 4					
	$2x + 4y - \pi = 0 \& 2x + 4y + 3\pi = 0$					
Q.16	If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{j} - \hat{k}$, find a vector \vec{c} such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$. Ans. $\frac{5}{3}i + \frac{2}{3}j + \frac{2}{3}k$					
Q.17	Evaluate: $\int \frac{x^2}{(x \sin x + \cos x)^2} dx$. Ans $\frac{-x}{\cos x(x \sin x + \cos x)} + \tan x$					
Q.18	Obtain the differential equation by eliminating a and b from the equation $y = e^{x} (a \cos x + b \sin x)$.					
Q.19	Prove that the function $f: R - \{3\} \rightarrow R - \{1\}$ given by $f(x) = \frac{x-2}{x-3}$ is bijection.					
Q.20	Find the equations of the line which intersects the lines $\frac{x-3}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ & $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and passes through the point (1, 1, 1). Ans. $\frac{x-1}{3} = \frac{y-1}{10} = \frac{z-1}{17}$					
Q.21	Solve the equations $\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2} \tan^{-1} x, (x > 0)$. Ans $x = \frac{1}{\sqrt{3}}$					
Q.22	If x = a sin pt and y = b cos pt, find the value of $\frac{d^2 y}{dx^2}at$ t = 0.					
	Section C					
Q.23	Find the equation of the plane which contains the line of intersection of the planes $\vec{r}.(\hat{i}+2\hat{j}+3\hat{k})-4=0 \& \vec{r}.(2\hat{i}+\hat{j}-\hat{k})+5=0$ and which is perpendicular to the plane $\vec{r}.(5\hat{i}+3\hat{j}-6\hat{k})+8=0$. Also the inclination of this plane with the xy plane. Ans: $r.(33i+45j+50k)-4120\lambda = \frac{7}{19}\cos\theta = \frac{50}{\sqrt{5614}}$					
Q.24	Show that the volume of the largest cone that can be inscribed in a sphere of radius R is 8/27 of the volume of the sphere. Ans: $f(x) = \frac{1}{3}\pi(r-x)(r+x)^2 \therefore x = \frac{r}{3}$ OR Show that the semi- vertical angle of a right circular cone of given surface area and maximum volume is $\sin^{-1}\left(\frac{1}{3}\right)$. Ans: $S = \pi r^2 + \pi r l \Rightarrow l = \frac{s - \pi r^2}{\pi r} \& f(r)$					
Q.25	$=V = \frac{1}{3}\pi r^{2}h \Rightarrow V^{2} = \frac{S^{2}r^{2}}{9} - \frac{2s\pi r^{4}}{9} \therefore s = 4\pi r^{2}$ Sketch the graph of $f(x) = \begin{cases} x-2 +2, & x \le 2\\ x^{2}-2, & x > 2 \end{cases}$. Evaluate $\int_{0}^{4} f(x) dx$. What does the value this integral represent on the graph? Ans $= \frac{62}{3}$ OR Find the area of the region in the first quadrant enclosed by the line y = x and the circle x² + y² = 32 above x axis Ans. $= 4\pi unit^{2}$					
Q.26	State the condition under which the following system of equations have a unique solutions. It					
Q .20	state the condition under which the following system of equations have a unique solutions. If					

TMC/D/79/89

3

P.T.O.

Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 92022217922630601(O) Mobile : <u>9425109601;9907757815</u> (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X, XI & XII.© publication of any part of this paper is strictly prohibited.. Visit us at : http://www.targetmathematic.com; Email:agyat99@gmail.com.

SOLID CONVERTER P

e

To remove this message, purchase the product at www.SolidDocuments.com

	TARGET MATH	IEMATICS by:-	- AGYAT GUP1	A Page 4 of 4			
	TARGET MATHEMATICS by:- AGYAT GUPTA Page 4 of 4 $A = \begin{bmatrix} 9 & 7 & 3 \\ 5 & -1 & 4 \\ 6 & 8 & 2 \end{bmatrix}$, find A^{-1} and hence solve the following system of equations: $9x + 7y + 3z = 6$; $5x - y + 4z = 1$; $6x + 8y + 2z = 4$.						
		$= \frac{-1}{70} \begin{bmatrix} -34 & 10 & 31\\ 14 & 0 & -22\\ -46 & -30 & -44 \end{bmatrix}$					
Q.27	A factory owner purchases two types of machines, A and B for his factory. The requirements and the limitations for the machines are as follows:						
	Machine	Area occupied	Labour force	Daily output(in units)			
	A	$\frac{1000m^2}{1000m^2}$	12 men	60			
	В	$1200m^2$	8 men	40			
	He has maximum area of 9000 m^2 available, and 72 skilled labourers who can operate both the machines. How many machines of each type should he buy to maximize the daily output?						
Q.28	Suppose a girl throws a die . If she gets a 5 or 6 , she tosses a coin three times and note the n of heads . If she gets a 1 , 2, 3 or 4 , she tosses a coin once and notes whether a heads or obtained . If she obtained exactly one head ;what is the probability that she threw 1 , 2 , 3 or the die .						
		OR					
Let the number of times a candidate applies for a job be X and $P(X=x)$ denotes the pro- will be selected x times. Given that (k+1)x, if $x = 0P(X = x) = 2kx$, if $x=1$ or 2 where k is a +ve real number.							
	$P(X = x) = \frac{(x)}{2kx}$	r 2 where k is a	a +ve real number.				
	k(6	-x), if $x = 3$ (or 4 or 5				
		· · · ·	-	ected exactly three times.(c)			
	What is the probability that he will be selected at least once.(d) Find the mean and variance of the 1						
	probability distribution	$=\frac{3}{3}$, var <i>iance</i> $=\frac{23}{18}$					
Q.29							

product at www.SolidDocuments.com

This document was created using